Identifying and ranking the drivers for improving and developing the application of artificial intelligence in the Iranian oil and gas industry value chain

Document Type : Original Article

Authors

1 Master of Public Administration, Faculty of Management and Accounting, Allameh Tabatabaei University, Tehran, Iran.

2 Associate Professor, Department of Business Administration, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.

3 Master of Business Administration, School of Management, University of Tehran, Tehran, Iran.

Abstract

Background and Objectives: Today, artificial intelligence technology, by focusing on algorithms based on the intelligentization of operational processes with more accurate risk prediction and preventive maintenance, increases safety and reduces sudden stops in production and transmission processes in the value chain of the oil and gas industry. Therefore, the purpose of this research was to identify and rank the drivers of improvement and development of the application of artificial intelligence in the value chain of the oil and gas industry in the Republic of Iran.
Materials and Methods: In terms of the method of conduct, the present study is based on structural interaction matrix analysis with a strategic futures research approach and in terms of the purpose, it is of a developmental-applied type. The statistical population of this study consists of 30 academic experts and senior managers of the oil and gas industry in the Republic of Iran. The data of this study were collected through library studies, structured interviews, and a qualitative questionnaire rated from zero to three according to the structural interaction matrix and analyzed with the MICMAC statistical software.
Results: The findings of this study showed that the drivers of improving interaction and cooperation between IT units and operational and strategic departments, attracting, training and developing human resources specialized in the fields of artificial intelligence and oil and gas engineering, and establishing the ability to integrate smart systems with operational processes and equipment in the industry are influential drivers (influence).
Conclusion: The results of this study showed that identifying and ranking the drivers of improvement and development of the application of artificial intelligence in the value chain of the Iranian oil and gas industry with a strategic futures research approach can pave the way for identifying upcoming opportunities and threats.

Keywords


منابع
اسحاقی گرجی، مجید، زارعی، عظیم اله، حمزوی، حسین، اسدبک، مهدی و محمدی شیر کلایی، حسینعلی. (1403). اولویت‌بندی مسائل سیاست زیست‌محیطی جمهوری اسلامی ایران. حکمرانی و توسعه، 4(1)، 74-92.    doi:10.22111/jipaa.2024.447250.1166 
بخشی زاده برج، کبری، حمزوی، حسین و جمالی، محمدامین. (1403). شناسایی و اولویت‌بندی پیشران‌های بهینه‌سازی زنجیره ارزش پایدار صنعت پتروشیمی ایران با رویکرد آینده‌نگاری راهبردی. مدیریت زنجیره ارزش راهبردی، 1(3)، 1-26.   doi: 10.22075/svcm.2025.36996.1024
جلالی، سید حسین، خلیل نژاد، شهرام و گل محمدی، عماد . (1397). قابلیت‌های استراتژیک در صنعت نفت و گاز: مطالعه‌ای در بخش میان‌دستی. مدیریت نوآوری، 7(4)، 51-80. https://www.nowavari.ir/article_90185.html
حمزوی، حسین، کاملی، محمدجواد و صالحی صدقیانی، جمشید. (1404). آینده‌پژوهشی تأثیرگذارترین و تأثیرپذیرترین عوامل مؤثر بر ترویج و ارتقای فرهنگ حفاظت از محیط‌زیست در سازمان‌های دولتی ج.ا.ایران. فصلنامه مدیریت و حقوق محیط زیست، 4(2).36-  https://sanad.iau.ir/Journal/jeml/Article/1211146
حمزوی، حسین، همتی فر، محمد، فتوت، بنفشه و حسینی، سیده مرضیه. (1404). شناسایی و اولویت‌بندی پیشران‌های راهبردی توسعه شایستگی‌های رفتاری کارکنان نسل Z در سازمان‌های دولتی با رهیافت آینده‌پژوهشی. مدیریت دولتی تطبیقی، 3(1).    doi: 10.22098/cpa.2025.17291.1068
رضایی‌منش، بهروز، حمزوی، حسین و حسینی، سیده مرضیه. (1404). شناسایی و رتبه‌بندی پیشران‌های بهینه‌سازی عملکرد پایدار سازمان‌های نفت و گاز و پتروشیمی با رویکرد آینده‌پژوهی. پژوهش‌های نوین در ارزیابی عملکرد. 4(1)، 11-26. doi: 10.22105/mrpe.2025.506185.1146
صادقی راد، محمد حسین و زمانیان، علیرضا و نیک اختر، یوسف. (1404). هوش مصنوعی در شرکت های بزرگ نفت، گاز و پتروشیمی،یازدهمین کنفرانس بین المللی مهندسی برق، کامپیوتر، مکانیک و هوش مصنوعی،مشهد   ،https://civilica.com/doc/2294655
غالمعلی پور، افشین. (1401). راهبردها و الزامات توسعه زنجیره ارزش نفت و گاز . اندیشکده اقتصاد مقاومتی. شناسه 140101119.
محمدی، مهدی، حیدری دهویی، جلیل و احمدی، عاطفه. (1402). شناسایی و اولویت‌بندی کاربردهای هوش مصنوعی در زنجیره تأمین4.0 (مورد مطالعه صنعت خرده‌فروشی). مدیریت توسعه فناوری، 11(4)، 78-106. doi: 10.22104/jtdm.2024.6904.3317
هوشمند، حمید، علی آبادیان، علی و بحری، امیرمهدی. (1403). نقش هوش مصنوعی در تحول دیجیتال زنجیره ارزش کشتی سازی، اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده، بوشهر.https://civilica.com/doc/2008122
 
References
Abdelmeguid, A., Afy-Shararah, M., & Salonitis, K. (2024). Towards circular fashion: Management strategies promoting circular behaviour along the value chain. Sustainable Production and Consumption, 48, 143-156.‏ https://doi.org/10.1016/j.spc.2024.05.010
Abu, Z., Aun, I. I., & Oluwasanmi, O. O. (2018). Technology transfer and entrepreneurial development in the value chain system of the Nigerian oil and gas industry. Pacific Journal of Science and Technology, 19(1), 50-54.‏ https://doi.org/10.2118/207091-ms
Ahmed, S. R., Baghdadi, R., Bernadskiy, M., Bowman, N., Braid, R., Carr, J., ... & Harris, N. C. (2025). Universal photonic artificial intelligence acceleration. Nature, 640(8058), 368-374.‏ https://doi.org/10.1038/s41586-025-08854-x
Al-Haji, Y. K., & Bakar, S. B. (2024). Factors that Influence AI Investment Decisions in Oman's Hydrocarbons Industry: A Review of the Theoretical Literature and Proposed Theoretical Model. Quality-Access to Success, 25(200).‏ http://dx.doi.org/10.57239/PJLSS-2024-22.2.00250
Aliyu, R., Mokhtar, A. A., & Hussin, H. (2022). Prognostic health management of pumps using artificial intelligence in the oil and gas sector: a review. Applied Sciences, 12(22), 11691.‏ http://dx.doi.org/10.3390/app122211691
Almarashda, H. A. H. A., Baba, I. B., Ramli, A. A., Memon, A. H., & Rahman, I. A. (2021). Human Resource Management and Technology Development in Artificial Intelligence Adoption in the UAE Energy Sector. Journal of Applied Engineering Sciences, 11(2).‏ https://doi.org/10.2478/jaes-2021-0010
Assimakopoulos, F., Vassilakis, C., Margaris, D., Kotis, K., & Spiliotopoulos, D. (2024). Artificial intelligence tools for the agriculture value chain: Status and prospects. Electronics, 13(22), 4362.‏ https://doi.org/10.3390/electronics13224362
Chandra, Y., & Feng, N. (2025). Algorithms for a new season? Mapping a decade of research on the artificial intelligence-driven digital transformation of public administration. Public Management Review, 1-35.‏ http://dx.doi.org/10.1080/14719037.2025.2450680
Choubey, S., & Karmakar, G. P. (2021). Artificial intelligence techniques and their application in oil and gas industry. Artificial Intelligence Review, 54(5), 3665-3683.‏ https://link.springer.com/article/10.1007/s10462-020-09935-1
Eisenreich, A., Füller, J., Stuchtey, M., & Gimenez-Jimenez, D. (2022). Toward a circular value chain: Impact of the circular economy on a company's value chain processes. Journal of Cleaner Production, 378, 134375.‏ https://doi.org/10.1016/j.jclepro.2022.134375
Esteban‐Amaro, R., Estelles‐Miguel, S., Lengua, I., Yannou, B., & Bouillass, G. (2025). Assessing circularity and sustainability of a value chain: A systematic literature review. Business Strategy and the Environment, 34(1), 634-647.‏ http://dx.doi.org/10.1002/bse.4009
Fadeev, A., Komendantova, N., Cherepovitsyn, A., Tsvetkova, A., & Paramonov, I. (2021). Methods and priorities for human resource planning in oil and gas projects in Russia and OPEC. OPEC Energy Review, 45(3), 365-389.‏ https://doi.org/10.1111/opec.12213
Favour, D. A. (2024). Petroleum Industry Value Chain Optimization: the Inevitability of Artificial Intelligence and Data Science in Midstream and Downstream Development. In SPE Nigeria Annual International Conference and Exhibition (p. D032S029R002). http://dx.doi.org/10.54660/.IJMRGE.2022.3.1.1075-1086
Ganeshkumar, C., Jena, S. K., Sivakumar, A., & Nambirajan, T. (2023). Artificial intelligence in agricultural value chain: review and future directions. Journal of Agribusiness in Developing and Emerging Economies, 13(3), 379-398.‏ http://dx.doi.org/10.1108/JADEE-07-2020-0140
Hussain, M., Alamri, A., Zhang, T., & Jamil, I. (2024). Application of artificial intelligence in the oil and gas industry. In Engineering applications of artificial intelligence (pp. 341-373). http://dx.doi.org/10.56726/IRJMETS57687
Huynh-The, T., Pham, Q. V., Pham, X. Q., Nguyen, T. T., Han, Z., & Kim, D. S. (2023). Artificial intelligence for the metaverse: A survey. Engineering Applications of Artificial Intelligence, 117, 105581.‏ https://doi.org/10.1016/j.engappai.2022.105581
John, A. O., & Oyeyemi, B. B. (2022). The Role of AI in Oil and Gas Supply Chain Optimization. International Journal of Multidisciplinary Research and Growth Evaluation, 3(1), 1075-1086.‏ http://dx.doi.org/10.54660/.IJMRGE.2022.3.1.1075-1086
Kitsios, F., & Kamariotou, M. (2021). Artificial intelligence and business strategy towards digital transformation: A research agenda. Sustainability, 13(4), 2025.‏ http://dx.doi.org/10.3390/su13042025
Koroteev, D., & Tekic, Z. (2021). Artificial intelligence in oil and gas upstream: Trends, challenges, and scenarios for the future. Energy and AI, 3, 100041.‏ https://doi.org/10.1016/j.egyai.2020.100041
Mayer, N., Gandhi, S. J., & Hecht, D. (2019). AN Understanding of artificial intelligence applications in the automotive industry value chain. In Proceedings of the International Annual Conference of the American Society for Engineering Management. (pp. 1-10). http://dx.doi.org/10.14445/23488379/IJEEE-V12I5P126
Ochieng, E. G., Ominde, D., & Zuofa, T. (2024). Potential application of generative artificial intelligence and machine learning algorithm in oil and gas sector: Benefits and future prospects. Technology in Society, 79, 102710.‏ http://dx.doi.org/10.1016/j.techsoc.2024.102710
Oyekunle, D., & Boohene, D. (2024). Digital transformation potential: The role of artificial intelligence in business. International Journal of Professional Business Review: Int. J. Prof. Bus. Rev., 9(3), 1.‏ http://dx.doi.org/10.26668/businessreview/2024.v9i3.4499
Razmak, J., Refae, G. A. E., & Farhan, W. (2025). The role of AI applications in production and operations management: complementing or replacing human labour. International Journal of Economics and Business Research, 29(13), 1-28.‏ http://dx.doi.org/10.1504/IJEBR.2025.146325
Selvik, J. T., Stanley, I., & Abrahamsen, E. B. (2020). SMART criteria for quality assessment of key performance indicators used in the oil and gas industry. International Journal of Performability Engineering, 16(7), 999.‏ http://dx.doi.org/10.23940/ijpe.20.07.p2.9991007
Singh, H., Li, C., Cheng, P., Wang, X., Hao, G., & Liu, Q. (2023). Real-time optimization and decarbonization of oil and gas production value chain enabled by industry 4.0 technologies: a critical review. SPE Production & Operations, 38(03), 433-451.‏ http://dx.doi.org/10.2118/214301-PA
Sircar, A., Yadav, K., Rayavarapu, K., Bist, N., & Oza, H. (2021). Application of machine learning and artificial intelligence in oil and gas industry. Petroleum Research, 6(4), 379-391.‏ https://doi.org/10.1016/j.ptlrs.2021.05.009
Temizel, C., Canbaz, C. H., Palabiyik, Y., Putra, D., Asena, A., Ranjith, R., & Jongkittinarukorn, K. (2019, March). A comprehensive review of smart/intelligent oilfield technologies and applications in the oil and gas industry. In SPE Middle East Oil and Gas Show and Conference (p. D042S087R001). http://dx.doi.org/10.2118/195095-MS
Wanasinghe, T. R., Wroblewski, L., Petersen, B. K., Gosine, R. G., James, L. A., De Silva, O., ... & Warrian, P. J. (2020). Digital twin for the oil and gas industry: Overview, research trends, opportunities, and challenges. IEEE access, 8, 104175-104197.‏ http://dx.doi.org/10.1109/ACCESS.2020.2998723
Zakizadeh, M., & Zand, M. (2024). Revolutionizing Oil & Gas: A Comprehensive Review of Smartening Technologies in the oil & Gas Industry. In Proceedings of the International Conference of New Technologies in Oil, Gas and Petrochemical Engineering in Iran, Tehran, Iran (pp. 22-23).‏
Zhang, L., & Wang, J. (2023). Intelligent safe operation and maintenance of oil and gas production systems: Connotations and key technologies. Natural Gas Industry B, 10(3), 293-303.‏ http://dx.doi.org/10.1016/j.ngib.2023.05.006
 
 
References [In Persian]
Bakhshizadeh Borj, K., Hamzavi, H. & Jamali, M. (2025). Identifying and prioritizing drivers for optimizing the sustainable value chain of Iran's petrochemical industry with a strategic foresight approach. Strategic Value Chain Management, 1(3), 1-26. doi: 10.22075/svcm.2025.36996.1024
Eshaghi Gordji, M., Zarei, A.A., Hamzavi, H., Asadbak, M., & Mohammadi Shir Kalai, H. (2024). Prioritizing Environmental Policy Issues of the Islamic Republic of Iran. Governance and Development Journal, 4(1), 75-92. doi:10.22111/jipaa.2024.447250.1166
Gholamalipour, A. (2022). Strategies and Requirements for Developing the Oil and Gas Value Chain. Resistance Economics Think Tank. ID 140101119.
Hamzavi, H., Hemmatifar, M., fotovat, B. & Hosseini, S. M. (2025). Identifying and prioritizing strategic drivers for developing behavioral competencies of Generation Z employees in government organizations with a futures research approach. Comparative Public Administration, 3(1). doi: 10.22098/cpa.2025.17291.1068
Hamzavi, H., Kameli, M.J. & Salehi Sedqiani, J.M. (2025). Future research on the most influential and influential factors affecting the promotion and enhancement of environmental protection culture in government organizations in the Republic of Iran. Environmental Management and Law, 4(2), 36-55. https://sanad.iau.ir/Journal/jeml/Article/1211146
Houshmand, H., Ali Abadian, A., & Bahri, A.M. (2024). The Role of Artificial Intelligence in the Digital Transformation of the Shipbuilding Value Chain, 1st International Biennial Conference of Artificial Intelligence and Data Science, Bushehr. https://civilica.com/doc/2008122
Jalali, S. H., Khalil Nezhad, S. & golmohammadi, E. (2019). Strategic Capabilities in the Oil and Gas Industry: A Study in the Midstream Sector. Innovation Management Journal, 7(4), 51-80. https://www.nowavari.ir/article_90185.html
Mohammadi, M., Heidaryd Dahooie, J. & Ahmadi, A. (2024). Identification and prioritization of artificial intelligence applications in supply chain 4.0 (retail industry case study). Journal of Technology Development Management, 11(4), 78-106. doi: 10.22104/jtdm.2024.6904.3317
RezaeiManesh, B., Hamzavi, H., & Hosseini, S. M. (2025). Identifying and prioritizing drivers for optimizing sustainable performance of oil, gas and petrochemical organizations with a futures research approach. Modern Research in Performance Evaluation. 4(1), 11-26. doi: 10.22105/mrpe.2025.506185.1146
Sadeghi Rad, M.H. & Zamanian, A. & Nik Akhtar, Y. (2025). Artificial Intelligence in Large Oil, Gas and Petrochemical Companies, 11th International Conference on Electrical, Computer, Mechanical and Artificial Intelligence Engineering, Mashhad, https://civilica.com/doc/2294655
Volume 2, Issue 1 - Serial Number 4
Research papers
May 2025
Pages 59-85
  • Receive Date: 23 July 2025
  • Revise Date: 05 August 2025
  • Accept Date: 12 August 2025
  • Publish Date: 22 May 2025