Ripple Effect in Supply Chain: Analysis of Intensifiers

Authors

1 assistant professor, department of business administration, faculty of financial science, management and entrepreneurship, university of Kashan, Kashan, Iran

2 department of business administration, faculty of financial science, management and entrepreneurship, university of Kashan, Kashan, Iran

Abstract

Background and Objectives: Ripple effect has many destructive effects on supply chains because if it occurs, it can involve a large number of layers of the supply chain. After the ripple effect occurs, issues in the supply chain can act as its intensifiers. This issue has not been investigated in previous studies, so this study has identified and modeled them in the Iranian machine-made carpet supply chain. The statistical population of this study is machine-made carpet supply chain experts. The data collection tool in the first stage is a semi-structured interview and in the second stage is a researcher-made questionnaire. The data analysis method in the first stage is content analysis and in the second stage is interpretive structural modeling. The results indicate 40 intensifiers that were grouped into 12 categories, which are: "weakness in planning and foresight", "structural intensifiers", "upstream intensifiers", "weakness in supply", "purity", "operational intensifiers", "technological intensifiers", "weakness in market orientation", "structural weakness of the chain", "chain culture", "human resource intensifiers" and "knowledge intensifier". After identifying these factors, an interpretative structural model was presented. The structural model indicates the great importance of "upstream intensifiers", "structural intensifiers" and "weakness in planning and foresight". Developing different scenarios, creating rapid response teams, creating market monitoring systems and simplifying processes and regulations are among the solutions to deal with intensifiers.

Keywords


منابع
مزروعی نصرآبادی، اسماعیل. (1402). آینده‌پژوهی زنجیره تأمین صنعت فرش ماشینی ایران: تحلیلی بر پیشران‌های اثر موجی. پژوهشنامه مدیریت اجرایی، 15(30)، 311-333. doi: 10.22080/jem.2024.23655.3754
میرزایی، علی؛ و مزروعی نصرآبادی، اسماعیل. (1403). مدل‌سازی و تحلیل سناریوی شرایط علی اثر موجی در زنجیرۀ تأمین صنایع غذایی ایران. پژوهش در مدیریت تولید و عملیات، 15(1)، 1-28. doi: 10.22108/pom.2024.138612.1523
مزروعی نصرآبادی، اسماعیل؛ حبیبی راد، امین؛ و شول، عباس. (1402). ارائه مدل عوامل کلیدی موفقیت برای مقابله با اثر موجی در زنجیره تأمین فرش ماشینی ایران: نگاهی بر همه‌گیری کرونا. چشم‌انداز مدیریت صنعتی، 13(1)، 199-217. doi: 10.48308/jimp.13.1.199
میرزایی، علی؛ و مزروعی نصرآبادی، اسماعیل. (1403). مدل‌سازی و تحلیل سناریوی راهبردهای مقابله با اثر موجی در زنجیره تأمین فراورده‌های غذایی ایران: رویکرد نقشه شناختی فازی. مطالعات مدیریت صنعتی، 22(72)، 227-269. https://doi.org/10.22054/jims.2024.76091.2880
Alam, M. F. B., Tushar, S. R., Ahmed, T., Karmaker, C. L., Bari, A. M., de Jesus Pacheco, D. A., ... & Islam, A. R. M. T. (2024). Analysis of the enablers to deal with the ripple effect in food grain supply chains under disruption: Implications for food security and sustainability. International Journal of Production Economics270, 109179.‏
Dogbe, C. S. K., Iddris, F., Duah, E., Boateng, P. A., & Kparl, E. M. (2023). Analyzing the health supply chain risks during COVID-19 pandemic: The moderating role of risk management. Cogent Business & Management10(3), 2281716.‏
El Ouarrak, Y., & Hmioui, A. (2023, February). Communication Between Supply Chain Actors: A Risk Reduction Factor in Supply Chains. In International Congress on Information and Communication Technology (pp. 695-703). Singapore: Springer Nature Singapore.‏
Figueira‐de‐Lemos, F., Silva, S. C., Pinto, R. P., & Kury, B. (2024). Impacts and Trends on Global Supply Chain After COVID‐19 Outbreak. Thunderbird International Business Review.‏
Gustavsson, I. (2023). AI-Driven Supply Chain Resilience for Revitalizing US Defense Manufacturing: Techniques and Applications. Journal of Artificial Intelligence Research and Applications3(2), 678-695.‏
Khakzad, N. (2015). Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliability Engineering & System Safety, 138, 263-272.
Korder, B., Maheut, J., & Konle, M. (2024). Simulation methods and digital strategies for supply chains facing disruptions: Insights from a systematic literature review. Sustainability16(14), 5957.‏
Li, Y., & Lai, K. K. (2023). Strategies for Supply Chain Risk Management. Routledge.‏
Palma, F., Saucedo, J. A., Marmolejo-Saucedo, J. A., & Rodriguez-Aguilar, R. (2019). The supply chain event management application: a case study. IFACPapersOnLine, 52(13), 2698-2703.
Saisridhar, P., Thuerer, M., & Avittathur, B. (2024). Assessing supply chain responsiveness, resilience and robustness (Triple-R) by computer simulation: a systematic review of the literature. International Journal of Production Research62(4), 1458-1488.‏
Schelp, P., Skipworth, H., Aktas, E., & Vieth, B. (2024). Supply Chain Risk Management. In Supply Chain Disruptions and Stock Prices: The Effects of Hurricane-Induced Disruptions on Company Stock Price (pp. 1-23). Cham: Springer Nature Switzerland.‏
Sindhwani, R., Jayaram, J., & Saddikuti, V. (2023). Ripple effect mitigation capabilities of a hub and spoke distribution network: an empirical analysis of pharmaceutical supply chains in India. International Journal of Production Research61(8), 2795-2827.‏
Tiainen, A. (2024). Risk management in the supply chain as strategic competitive advantage.‏ master's thesis, School of Engineering Science, Tuotantotalous.
 
Volume 1, Issue 2 - Serial Number 2
Research papers
November 2024
Pages 79-92
  • Receive Date: 04 December 2024
  • Revise Date: 11 January 2025
  • Accept Date: 11 January 2025
  • Publish Date: 21 November 2024