Abdullah, M., Hishamuddin, H., & Bazin, N. (2019). A system dynamics approach to investigate the effects of disruption on the supply chain with a mitigation strategy. IOP Conference Series: Materials Science and Engineering, 697(1), 012024. https://doi.org/10.1088/1757-899X/697/1/012024
Alizadeh, M., Paydar, M. M., Hosseini, S. M., & Makui, A. (2021). Influenza vaccine supply chain network design during the COVID-19 pandemic considering dynamical demand. Scientia Iranica. https://doi.org/10.24200/sci.2021.58365.5694
Arifoğlu, K., & Tang, C. S. (2022). A two-sided incentive program for coordinating the influenza vaccine supply chain. Manufacturing & Service Operations Management, 24(1), 235–255. https://doi.org/10.1287/msom.2020.0938
Chen, S., Zhang, M., Ding, Y., & Nie, R. (2020). Resilience of China’s oil import system under external shocks: A system dynamics simulation analysis. Energy Policy, 146, 111795. https://doi.org/10.1016/j.enpol.2020.111795
Cho, S.-H. (2010). The optimal composition of influenza vaccines subject to random production yields. Manufacturing & Service Operations Management, 12(2), 256–277. https://doi.org/10.1287/msom.1090.0271
Chung, J. R., Rolfes, M. A., Flannery, B., Prasad, P., O’Halloran, A., Garg, S., Fry, A. M., Singleton, J. A., Patel, M., Reed, C., & others. (2020). Effects of influenza vaccination in the United States during the 2018–2019 influenza season. Clinical Infectious Diseases, 71(8), e368–e376. https://doi.org/10.1093/cid/ciz1244
Creaco, E., Di Nardo, A., Giudicianni, C., Greco, R., Santonastaso, G. F., & others. (2018). Resilience analysis in the permanent partitioning of a water distribution network. Proceedings of 13th International Conference on Hydroinformatics.
Dai, T., Cho, S.-H., & Zhang, F. (2016). Contracting for on-time delivery in the US influenza vaccine supply chain. Manufacturing & Service Operations Management, 18(3), 332–346. https://doi.org/10.1287/msom.2015.0574
Demirci, E. Z., & Erkip, N. K. (2020). Designing intervention scheme for vaccine market: A bilevel programming approach. Flexible Services and Manufacturing Journal, 32, 453–485. https://doi.org/10.1007/s10696-019-09348-5
Diabat, A., Jabbarzadeh, A., & Khosrojerdi, A. (2019). A perishable product supply chain network design problem with reliability and disruption considerations. International Journal of Production Economics, 212, 125–138. https://doi.org/10.1016/j.ijpe.2018.09.018
Ding, Y., Chen, S., Zheng, Y., Chai, S., & Nie, R. (2022). Resilience assessment of China’s natural gas system under supply shortages: A system dynamics approach. Energy, 247, 123518. https://doi.org/10.1016/j.energy.2022.123518
Dolgui, A., & Ivanov, D. (2021). Exploring supply chain structural dynamics: New disruptive technologies and disruption risks. International Journal of Production Economics, 229, 107886.
https://doi.org/10.1016/j.ijpe.2020.107886
Duijzer, L. E., Van Jaarsveld, W., & Dekker, R. )2018) The benefits of combining early a specific vaccination with later specific vaccination. European Journal of Operational Research.;271(2):606–19.
Enayati, S., & Özaltın, O. Y. (2020). Optimal influenza vaccine distribution with equity. European Journal of Operational Research, 283(2), 714–725. https://doi.org/10.1016/j.ejor.2019.11.025
Forrester, J. W., & Senge, P. M. (1996). Tests for building confidence in system dynamics models. Modelling for Management: Simulation in Support of Systems Thinking, 2(414–434).
Georgiadis, G. P., & Georgiadis, M. C. (2021). Optimal planning of the COVID-19 vaccine supply chain. Vaccine, 39(37), 5302–5312. https://doi.org/10.1016/j.vaccine.2021.07.068
Ivanov, D. (2022). Viable supply chain model: Integrating agility, resilience and sustainability perspectives—Lessons from and thinking beyond the COVID-19 pandemic. Annals of Operations Research, 1–21. https://doi.org/10.1007/s10479-020-03640-6
Lin, Q., Zhao, Q., & Lev, B. (2020). Cold chain transportation decision in the vaccine supply chain. European Journal of Operational Research, 283(1), 182–195. https://doi.org/10.1016/j.ejor.2019.11.005
Lin, Q., Zhao, Q., & Lev, B. (2022). Influenza vaccine supply chain coordination under uncertain supply and demand. European Journal of Operational Research, 297(3), 930–948. https://doi.org/10.1016/j.ejor.2021.05.025
Lister, S., & Williams, E. D. (2004). Influenza vaccine shortages and implications.
Modares, A., Pooya, A., Emroozi, V. B., & Roozkhosh, P. (2024). Presenting a new model for evaluating the factors affecting equipment reliability using system dynamics. Quality and Reliability Engineering International. https://doi.org/10.1002/qre.3553
Mohammadi, M., Dehghan, M., Pirayesh, A., & Dolgui, A. (2022). Bi-objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID-19 pandemic. Omega, 113, 102725. https://doi.org/10.1016/j.omega.2022.102725
Özaltın, O. Y., Prokopyev, O. A., & Schaefer, A. J. (2018). Optimal design of the seasonal influenza vaccine with manufacturing autonomy. INFORMS Journal on Computing, 30(2), 371–387. https://doi.org/10.1287/ijoc.2017.0786
Özaltın, O. Y., Prokopyev, O. A., Schaefer, A. J., & Roberts, M. S. (2011). Optimizing the societal benefits of the annual influenza vaccine: A stochastic programming approach. Operations Research, 59(5), 1131–1143. https://doi.org/10.1287/opre.1110.0988
Paul, S. K., Chowdhury, P., Moktadir, M. A., & Lau, K. H. (2021). Supply chain recovery challenges in the wake of COVID-19 pandemic. Journal of Business Research, 136, 316–329. https://doi.org/10.1016/j.jbusres.2021.07.056
Queiroz, M. M., Ivanov, D., Dolgui, A., & Wamba, S. F. (2022). Impacts of epidemic outbreaks on supply chains: Mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Annals of Operations Research, 319(1), 1159–1196. https://doi.org/10.1007/s10479-020-03685-7
Rastegar, M., Tavana, M., Meraj, A., & Mina, H. (2021). An inventory-location optimization model for equitable influenza vaccine distribution in developing countries during the COVID-19 pandemic. Vaccine, 39(3), 495–504. https://doi.org/10.1016/j.vaccine.2020.12.022
Roozkhosh, P., Pooya, A., & Agarwal, R. (2023). Blockchain acceptance rate prediction in the resilient supply chain with hybrid system dynamics and machine learning approach. Operations Management Research, 16(2), 705–725. https://doi.org/10.1007/s12063-022-00336-x
Sabouhi, F., Pishvaee, M. S., & Jabalameli, M. S. (2018). Resilient supply chain design under operational and disruption risks considering quantity discount: A case study of pharmaceutical supply chain. Computers & Industrial Engineering, 126, 657–672. https://doi.org/10.1016/j.cie.2018.10.001
Sadjadi, S. J., Ziaei, Z., & Pishvaee, M. S. (2019). The design of the vaccine supply network under uncertain condition: A robust mathematical programming approach. Journal of Modelling in Management, 14(4), 841–871. https://doi.org/10.1108/JM2-07-2018-0093
Sah, P., Medlock, J., Fitzpatrick, M. C., Singer, B. H., & Galvani, A. P. (2018). Optimizing the impact of low-efficacy influenza vaccines. Proceedings of the National Academy of Sciences, 115(20), 5151–5156. https://doi.org/10.1073/pnas.1802479115
Sai, A. R., Buckley, J., Fitzgerald, B., & Le Gear, A. (2021). Taxonomy of centralization in public blockchain systems: A systematic literature review. Information Processing & Management, 58(4), 102584. https://doi.org/10.1016/j.ipm.2021.102584
Samani, M. R. G., & Hosseini-Motlagh, S.-M. (2019). An enhanced procedure for managing blood supply chain under disruptions and uncertainties. Annals of Operations Research, 283(1), 1413–1462. https://doi.org/10.1007/s10479-018-2873-4
Sansone, M., Holmstrom, P., Hallberg, S., Nordén, R., Andersson, L.-M., & Westin, J. (2022). System dynamic modelling of healthcare associated influenza—a tool for infection control. BMC Health Services Research, 22(1), 709. https://doi.org/10.1186/s12913-022-07959-7
Sazvar, Z., Tafakkori, K., Oladzad, N., & Nayeri, S. (2021). A capacity planning approach for sustainable-resilient supply chain network design under uncertainty: A case study of vaccine supply chain. Computers & Industrial Engineering, 159, 107406. https://doi.org/10.1016/j.cie.2021.107406
Shih, W. C. (2020). Is it time to rethink globalized supply chains? MIT Sloan Management Review, 61(4), 1–3. https://sloanreview.mit.edu/article/is-it-time-to-rethink-globalized-supply-chains/
Sy, C., Bernardo, E., Miguel, A., San Juan, J. L., Mayol, A. P., Ching, P. M., Culaba, A., Ubando, A., & Mutuc, J. E. (2020). Policy development for pandemic response using system dynamics: A case study on COVID-19. Process Integration and Optimization for Sustainability, 4, 497–501. https://doi.org/10.1007/s41660-020-00130-x
Zhu, Q., Krikke, H., & Caniëls, M. C. (2021). The effects of different supply chain integration strategies on disruption recovery: A system dynamics study on the cheese industry. Logistics, 5(2), 19. https://doi.org/10.3390/logistics5020019
Zimmerman, R. K., Nowalk, M. P., Chung, J., Jackson, M. L., Jackson, L. A., Petrie, J. G., Monto, A. S., McLean, H. Q., Belongia, E. A., Gaglani, M., & others. (2016). 2014–2015 influenza vaccine effectiveness in the United States by vaccine type. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciw635